126 research outputs found

    Spatio-Temporal Action Detection with Cascade Proposal and Location Anticipation

    Full text link
    In this work, we address the problem of spatio-temporal action detection in temporally untrimmed videos. It is an important and challenging task as finding accurate human actions in both temporal and spatial space is important for analyzing large-scale video data. To tackle this problem, we propose a cascade proposal and location anticipation (CPLA) model for frame-level action detection. There are several salient points of our model: (1) a cascade region proposal network (casRPN) is adopted for action proposal generation and shows better localization accuracy compared with single region proposal network (RPN); (2) action spatio-temporal consistencies are exploited via a location anticipation network (LAN) and thus frame-level action detection is not conducted independently. Frame-level detections are then linked by solving an linking score maximization problem, and temporally trimmed into spatio-temporal action tubes. We demonstrate the effectiveness of our model on the challenging UCF101 and LIRIS-HARL datasets, both achieving state-of-the-art performance.Comment: Accepted at BMVC 2017 (oral

    Cascaded Boundary Regression for Temporal Action Detection

    Full text link
    Temporal action detection in long videos is an important problem. State-of-the-art methods address this problem by applying action classifiers on sliding windows. Although sliding windows may contain an identifiable portion of the actions, they may not necessarily cover the entire action instance, which would lead to inferior performance. We adapt a two-stage temporal action detection pipeline with Cascaded Boundary Regression (CBR) model. Class-agnostic proposals and specific actions are detected respectively in the first and the second stage. CBR uses temporal coordinate regression to refine the temporal boundaries of the sliding windows. The salient aspect of the refinement process is that, inside each stage, the temporal boundaries are adjusted in a cascaded way by feeding the refined windows back to the system for further boundary refinement. We test CBR on THUMOS-14 and TVSeries, and achieve state-of-the-art performance on both datasets. The performance gain is especially remarkable under high IoU thresholds, e.g. map@tIoU=0.5 on THUMOS-14 is improved from 19.0% to 31.0%

    RED: Reinforced Encoder-Decoder Networks for Action Anticipation

    Full text link
    Action anticipation aims to detect an action before it happens. Many real world applications in robotics and surveillance are related to this predictive capability. Current methods address this problem by first anticipating visual representations of future frames and then categorizing the anticipated representations to actions. However, anticipation is based on a single past frame's representation, which ignores the history trend. Besides, it can only anticipate a fixed future time. We propose a Reinforced Encoder-Decoder (RED) network for action anticipation. RED takes multiple history representations as input and learns to anticipate a sequence of future representations. One salient aspect of RED is that a reinforcement module is adopted to provide sequence-level supervision; the reward function is designed to encourage the system to make correct predictions as early as possible. We test RED on TVSeries, THUMOS-14 and TV-Human-Interaction datasets for action anticipation and achieve state-of-the-art performance on all datasets

    Quantum Bruhat graph and tilted Richardson varieties

    Full text link
    Quantum Bruhat graph is a weighted directed graph on a finite Weyl group first defined by Brenti-Fomin-Postnikov. It encodes quantum Monk's rule and can be utilized to study the 33-point Gromov-Witten invariants of the flag variety. In this paper, we provide an explicit formula for the minimal weights between any pair of permutations on the quantum Bruhat graph, and consequently obtain an Ehresmann-like characterization for the tilted Bruhat order. Moreover, for any ordered pair of permutations uu and vv, we define the tilted Richardson variety Tu,vT_{u,v}, with a stratification that gives a geometric meaning to intervals in the tilted Bruhat order. We provide a few equivalent definitions to this new family of varieties that include Richardson varieties, and establish some fundamental geometric properties including their dimensions and closure relations.Comment: 28 page
    • …
    corecore